Questões de Matemática - Geometria - Geometria espacial
202 Questões
Questão 149 13557035
ENEM 2º Dia (Verde) 2024Para obter um sólido de revolução (rotação de 360º em torno de um eixo fixo), uma professora realizou as seguintes etapas:
• recortou o trapézio retângulo \(PQRS\) de um material rígido;
• afixou o lado \(PS\) do trapézio em uma vareta fixa retilínea (eixo de rotação);
• girou o trapézio 360º em torno da vareta e obteve um sólido de revolução.
Observe a figura que apresenta o trapézio afixado na vareta e o sentido de giro.
O sólido obtido foi um(a
Questão 58 9484467
EEAR 1º Etapa 2023Um copo cônico tem 12 cm de profundidade. Se sua capacidade é de 100π cm3 , então o diâmetro interno da sua borda é _____ cm.
Questão 138 8152502
ENEM 2° Dia (Prova Rosa) 2022Uma empresa produz e vende um tipo de chocolate, maciço, em formato de cone circular reto com as medidas do diâmetro da base e da altura iguais a 8 cm e 10 cm, respectivamente, como apresenta a figura.
Devido a um aumento de preço dos ingredientes utilizados na produção desse chocolate, a empresa decide produzir esse mesmo tipo de chocolate com um volume 19% menor, no mesmo formato de cone circular reto com altura de 10 cm.
Para isso, a empresa produzirá esses novos chocolates com medida do raio da base, em centímetro, igual a
Questão 54 7358094
UNITAU Verão Medicina 1ª Fase 2021Um produto utilizado em cirurgias é comercializado na forma líquida e em embalagens no formato esférico com diâmetro medindo 6 cm. Para sua manipulação em determinada cirurgia, o médico transfere todo o conteúdo do produto que está contido em 5 embalagens para um recipiente no formato de cone circular reto e observa que o volume transferido atingiu altura de 15 cm nesse cone.
Se π = 3, pode-se afirmar corretamente que o raio da base desse volume líquido no cone é:
Questão 24 7836074
UNIFIMES 2019Elisa tinha um brinquedo no formato de um cone. Ela pediu pra sua mãe fazer os cálculos pra saber quantos mililitros de água pode colocar no brinquedo para que fique cheio até a boca, sem excesso.
Sabendo que o brinquedo de forma cônica tem 5 cm de diâmetro, 12 cm de altura e considerando π = 3,14, o brinquedo de Elisa cabe:
Questão 14 3232630
UFRR 2019Um reservatório cônico, cuja altura corresponde a três vezes o valor do diâmetro de sua base, tem a capacidade volumétrica igual a metros cúbicos.
Nesse caso, o valor do raio da sua base é:
Pastas
06