Questões de Matemática - Geometria - Geometria plana
226 Questões
Questão 83 14771725
UECE Específicas 2 Fase 1 Dia 2025/1Em um trapézio isósceles, a medida da base menor é
e a medida de cada um dos lados não paralelos é
. Se cada um dos lados não paralelos forma com a base maior um ângulo interno de
graus, então, a medida, em cm2, da área deste trapézio é
Veja que 
Questão 16 14644936
UECE 1ª Fase 2025/2Um terreno plano é limitado por uma linha fechada na forma de um losango.
Se a medida de um dos lados do losango é 20 m e se a medida de um de seus ângulos internos é 60o, então a medida da área do terreno, em m2, é igual a
Questão 10 15092629
EsPCEx Dia 2 2024Um quadrilátero ABCD tem as diagonais perpendiculares entre si medindo 5 cm e 7 cm.
A área do quadrilátero, em cm2, é igual a:
Questão 33 14477669
Unaerp Processo Seletivo 2024/1A figura a seguir representa um quadrado ABCD de centro P, sendo M o ponto médio do lado AD.

Sejam x e y, em metros, respectivamente, as distâncias de P até M, e de P até D. A razão x/y é igual ao seno do ângulo que mede:
Questão 161 14454438
ENEM PPL 2° Dia (Amarelo) 2024Uma microempresa pretende fabricar pipas para vender no próximo verão. Um modelo de pipa está representado pelo quadrilátero ABCD.

Nessa representação, os segmentos AB, BC e CE medem, respectivamente, 20 cm, 34 cm e 30 cm. Além disso, E pertence ao segmento AC e é ponto médio do segmento BD.
A medida da área, em centímetro quadrado, desse modelo de pipa é
Questão 25 14752048
UEM Pas 2 Etapa 2023Seja ABCD um trapézio cuja base maior AB mede 27cm e a altura mede 8cm. Considere sobre a base maior dois pontos C′ e D′ de modo que os triângulos ADD′ e BCC′ são retângulos em C′ e D′ respectivamente, os catetos AD′ e BC′ medem 6cm e 8cm, respectivamente.
Assinale o que for correto.
As diagonais de ABCD são congruentes e medem 25cm.
A área de ABCD é maior que 150cm2.
Os triângulos ADD′ e BCC′ são semelhantes.
A soma das medidas das hipotenusas dos triângulos ADD′ e BCC' é menor que (10 + 8√2)cm.
Os ângulos 𝐶′𝐵𝐶 e 𝐶′𝐶̂𝐵 medem ambos 45°.
06


